Book Content
chapters • 17h4m total length
1. Introducing Advanced Deep Learning with Keras
2. Deep Neural Networks
3. Autoencoders
4. Generative Adversarial Networks (GANs)
5. Improved GANs
6. Disentangled Representation GANs
7. Cross-Domain GANs
8. Variational Autoencoders (VAEs)
9. Deep Reinforcement Learning
10. Policy Gradient Methods
11. Object Detection
12. Semantic Segmentation
13. Unsupervised Learning Using Mutual Information














