Book Content
chapters • 10h12m total length
1. Evaluating Machine Learning Models
2. Introducing Hyperparameter Tuning
3. Exploring Exhaustive Search
4. Exploring Bayesian Optimization
5. Exploring Heuristic Search
6. Exploring Multi-Fidelity Optimization
7. Hyperparameter Tuning via Scikit
8. Hyperparameter Tuning via Hyperopt
9. Hyperparameter Tuning via Optuna
10. Advanced Hyperparameter Tuning with DEAP and Microsoft NNI
11. Understanding Hyperparameters of Popular Algorithms
12. Introducing Hyperparameter Tuning Decision Map
13. Tracking Hyperparameter Tuning Experiments
14. Conclusions and Next Steps














